EL SEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and structure–activity relationships of sinenxan A derivatives as multidrug resistance reversal agents

Meng Huang a,†, Xin Zhao b, Meng Zhang a, Jun Gu a, Xiaoguang Chen b, Dali Yin a,*

- ^a Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Rejing 100050 China
- b Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China

ARTICLE INFO

Article history: Received 23 March 2010 Revised 23 June 2010 Accepted 26 July 2010 Available online 29 July 2010

Keywords: Sinenxan A derivatives Multidrug resistant reversal activity Anti-cancer

ABSTRACT

Two types of sinenxan A derivatives with different side chains at C-5 were synthesized and evaluated for their in vitro multidrug resistant reversal activities. Several derivatives exhibited better activities than the positive control verapamil. The structure–activity relationships of these derivatives suggested that a carbonyl group at C-13 and the length of side chain at C-5 are important for the activity.

© 2010 Elsevier Ltd. All rights reserved.

Multidrug resistance (MDR) refers to a phenomenon whereby cancer cells undergoing chemotherapy simultaneously develop cross resistance to a number of unrelated anticancer drugs with diverse structures and mechanisms of action. MDR attributes to a variety of mechanisms of action which are not fully understood yet so far. One of the most important mechanisms is due to the overexpression of a transmembrane protein called P-glycoprotein (P-gp), which can actively transport anticancer drugs out of the cancer cells and thus result in a decreased intracellular accumulation of the anticancer drugs. Therefore, P-gp has emerged as a promising target for cancer therapy and great efforts have been focused on the development of effective reversal agents to overcome P-gp-mediated MDR.

Some chemically diverse compounds such as verapamil, quinine, and cyclosporin A have been previously reported to directly bind to P-gp with subsequent inhibition of pump activity and thus resensitize MDR cells to anticancer drugs.³ It was found recently that some natural taxoids isolated from the Japanese yew *Taxus cuspidata* also enhanced the cytotoxicity of vincristine (VCR) in MDR human ovarian cancer 2780AD cells and efficiently inhibited [³H]-azidopine photolabeling of P-gp.⁴ In addition, surprisingly, these natural taxoids exhibited weak or no cytotoxicity. The strongest increase of VCR cellular accumulation by taxezopidine G (Fig. 1) corresponded to be 323% of that by verapamil.⁵ This has

paved the way to the synthesis and study of potent MDR reversal agents of the taxoid family. Taxinine (Fig. 1), a major natural taxoid, has been chemically modified to yield many compounds showing an increase in activity to reverse MDR and weak cytotoxicity. However, taxinine and taxezopidine G can be only isolated from the seeds of the Chinese yew *Taxus chinensis* and Japanese yew *T. cuspidata* in very low yields of 0.014% and 0.0056% (w/w), respectively. The synthesis is a synthesis of 0.014% and 0.0056% (w/w), respectively.

Sinenxan A (Fig. 1), a biosynthetic taxoid consisting of a 6/8/6-membered ring system, can be obtained in a higher yield of 5.0% (w/w).⁸ Nine sinenxan A derivatives with different side chains at C-5 have been semi-synthesized in our group and showed MDR reversal activity against VCR-resistant human oral epidermoid carcinoma KB/V cells.⁹ Among these sinenxan A derivatives, three compounds were selected for further investigation on their in vitro MDR reversal activities and one compound was evaluated regarding its in vivo sensitizing activity with VCR-resistant KB/V tumor xenografts.¹⁰ Our preliminary structure–activity relationships (SAR) results⁹ showed that change of 5-O acyl substituents has a remarkable impact on the MDR reversal activity.

However, 5-O acyl substituents in our previous study were limited to side chains containing a phenyl ring. Therefore, side chains with different lengths containing another similar ring, such as a heterocycle, a cyclohexane or a naphthalin, could be introduced at C-5 to investigate the electronic effect and space effect on the activity. Especially, in view of the poor aqueous solubility of taxoids, introduction of side chains containing a heterocycle is expected to improve physicochemical property and subsequent drug metabolism and pharmacokinetics (DMPK) profile of the whole

^{*} Corresponding author. Tel.: +86 10 63037952; fax: +86 10 63165248. E-mail address: yindali@imm.ac.cn (D. Yin).

[†] Present address: Department of Pharmacology, School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, United States.

Figure 1. Chemical structures of taxezopidine G, taxinine, and sinenxan A.

Scheme 1. Reagents and conditions: (a) 10 N KOH, CH₃OH, 0 °C, 36%; (b) (i) NaH, CS₂, THF, reflux, 90%; (ii) CH₃I, THF, 45 °C, 90%; (c) Bu₃SnH, AlBN, toluene, 80 °C, 90%; (d) tBuOK, THF, -78 °C, 80%; (e) RCOOH, DCC, DMAP.

taxoid molecule. On the other hand, to our best knowledge, the information about the effect of 13-oxo on the activity is limited. It would be necessary to investigate the role of 13-oxo related to MDR reversal activities.

Herein, we report the most recent progress in this research. Two series of compounds with different 5-O acylations were synthesized to investigate the structure–activity relationships (SAR) of 5-*O* acyl substituents as well as that of 13-oxo. The key intermediates **4** and **19** were synthesized starting from sinenxan A (Schemes 1 and 2)¹¹ followed by 5-O acylation to give targets **5-17** and **20-32**, respectively. The structures of these target compounds were validated by ¹H NMR, FAB-MS or ESI-MS.

Scheme 2. Reagents and conditions: (a) 10 N KOH, CH₃OH, 0 °C, 36%; (b) (i) NaH, CS₂, THF, reflux, 90%; (ii) CH₃I, THF, 45 °C, 90%; (c) Bu₃SnH, AlBN, toluene, 80 °C, 90%; (d) PCC, NaOAc, celite, benzene, reflux, 60%; (e) tBuOK, THF, -78 °C, 90%; (f) RCOOH, DCC, DMAP or RCOCI.

Table 1
Effects of sinenxan A derivatives on resensitizing to VCR in KB/V cells

Compds	OAC R1	IC ₅₀ (nM)	Compds	R^2O AcO AcO R^2O R^2	IC ₅₀ (nM)
5		706.14	20		1795.99
6		403.58	21		1203.69
7		1616.67	22		191.77
8		48.23	23		2.80
9	—CH=CH	509.83	24		55.98
10	OMe	370.47	25		71.21
11	0	45.36	26	—CH=CH O	11.05
12		537.24	27	S	1184.72
13		763.99	28	S	356.51
14	— CH=CH O	347.62	29	S	24.53
15	S	346.09	30	H	0.87
16		52.68	31		63.32
17	СООН	902.74	32	N	12.97
			Verapamil	14	18.47

The IC50 values of VCR in KB/V cells were determined in the presence of 10 µM of sinenxan A derivatives. Verapamil was used as a positive control.

MDR reversal activity of the derivatives was tested in vitro on the cellular accumulation of VCR in KB/V cells, which is 100-fold more resistent to VCR and cross resistance to doxorubicin, paclitaxel, and colchicine. The results were shown in Table 1. Among these sinenxan A derivatives, compounds **30** (IC₅₀ = 0.87 nM), **23** (IC₅₀ = 2.80 nM), **26** (IC₅₀ = 11.05 nM), and **32** (IC₅₀ = 12.97 nM), that were 21.23, 6.60, 1.67, and 1.42 times more potent than verapamil, completely reversed the resistance to VCR in KB/V cells overexpressing P-gp. Compounds **8**, **11**, **16**, **24**, **25**, **29**, and **31** partially reversed the MDR in KB/V cells. The others had no MDR reversal activities.

Most of these sinenxan A derivatives were also evaluated in vitro on the cytotoxicity against KB cells and exhibited weak or no cytotoxicity (data not shown).

Most of the derivatives with a heterocyclic acyl at O-5 and a 13-oxo displayed increased MDR reversal activity in KB/V cells. In particular, all of the compounds bearing nitrogen-containing heterocycles (16, 30, 31, and 32) showed better potency. Compounds 23 possessing a cyclohexyl also showed improved MDR reversal activity.

In summary, the in vitro SAR suggested that the presence of a carbonyl group at C-13 and two or three atoms length of side chain at C-5 might be important for the activity of reversing MDR. Some derivatives bearing a cyclohexyl or a heterocycle at C-5 side chain are favorable for this type of activity.

Acknowledgments

This research work was financially supported by the National Natural Science Foundation of China (No. 39770872 and No. 30100230). The starting material sinenxan A was supplied by the Department of Biosynthesis, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College.

References and notes

- 1. Litman, T.; Druley, T. E.; Stein, W. D.; Bates, S. E. Cell Mol. Life Sci. 2001, 58, 931.
- Sikic, B. I.; Fisher, G. A.; Lum, B. L.; Halsey, J.; Beketic-Oreskovic, L.; Chen, G. Cancer Chemother. Pharmacol. 1997, 40.
- 3. Tan, B.; Piwnica-Worms, D.; Ratner, L. Curr. Opin. Oncol. 2000, 12, 450.

- 4. (a) Kobayashi, J.; Hosoyama, H.; Wang, X.-X.; Shigemori, H.; Koiso, Y.; Iwasaki, S.; Sasaki, T.; Naito, M.; Tsuruo, T. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 393; (b) Kosugi, K.; Sakai, J.; Zhang, S.; Watanabe, Y.; Sasaki, H.; Suzuki, T.; Hagiwara, H.; Hirata, N.; Hirose, K.; Ando, M.; Tomida, A.; Tsuruo, T. *Phytochemistry* **2000**, *54*, 839; (c) Sakai, J.; Sasaki, H.; Kosugi, K.; Zhang, S.; Hirata, N.; Hirose, K.; Tomida, A.; Tsuruo, T.; Ando, M. *Heterocycles* **2001**, *54*, 999.
- 5. Zhang, S.; Wang, J.; Hirose, K.; Ando, M. J. Nat. Prod. 2002, 65, 1786.
- (a) Sako, M.; Suzuki, H.; Yamamoto, N.; Hirota, K. Bioorg. Med. Chem. Lett. 1999, 9, 3403; (b) Hosoyama, H.; Shigemori, H.; Tomida, A.; Tsuruo, T.; Kobayashi, J. Bioorg. Med. Chem. Lett. 1999, 9, 389.
- 7. Yin-Ju, C.; Chin-Yeu, C.; Ya-Ching, S. J. Nat. Prod. 1999, 62, 149.

- 8. Cheng, K.-K.; Chen, W.-M.; Zhu, W.-H.; Fang, Q.-C.; Liang, X.-T.; Guo, J.-Y.; Meng, C.; Kong, M.; He, W.-Y.; Lu, J.; Tong, X.-J.; Obuchi, T. WO Patent, 9,406,740, A1, 1994.
- Zhang, M.; Yin, D.-L.; Liu, H.-Y.; Guo, J.-Y.; Liang, X.-T. Acta Pharm. Sinica 2003, 38, 424.
- 10. Zhao, X.; Gu, J.; Yin, D.-L.; Chen, X.-G. Bioorg. Med. Chem. Lett. 2004, 14, 4767.
- 11. (a) Yin, D.-L.; Liu, R.-W.; Wang, D.-H.; Guo, J.-Y.; Liang, X.-T.; Yoshinori, S.; Kazuya, K. J. Chin. Pharm. Sci. 1999, 8, 191; (b) Zhang, M.; Yin, D.-L.; Guo, J.-Y.; Liang, X.-T. Chin. Chem. Lett. 2002, 13, 135; (c) Zhang, M.; Yin, D.-L.; Guo, J.-Y.; Liang, X.-T. Chin. Chem. Lett. 2002, 13, 501.